A novel cellulose-manganese oxide hybrid material by in situ soft chemical synthesis and its application for the removal of Pb(II) from water.
نویسندگان
چکیده
We report an in situ soft chemical synthesis of a novel hybrid material, cellulose-nanoscale-manganese oxide composite (C-NMOC), and its application for Pb(II) removal from aqueous solutions. For comparison, detailed Pb(II) adsorption studies were also performed with nanoscale-manganese oxide powder (NMO), prepared through a similar route. Various spectroscopic and microscopic techniques were used to characterize the as-synthesized materials. X-ray photoelectron spectroscopic (XPS) measurements confirmed the existence of Mn(IV) phase in NMO whereas C-NMOC showed largely the Mn(III) phase. The existence and uniform distribution of manganese oxide in cellulose fiber materials was confirmed by SEM and EDAX analyses. The adsorption studies reveal that the Pb(II) uptake onto C-NMOC is a fast process and >90% of the uptake occurred within the first 10 min contact time. The Sips isotherm predicted the equilibrium data well and the maximum Pb(II) uptake capacity of C-NMOC (4.64% Mn loading) was estimated to be 80.1 mg g(-1). The Pb(II) adsorption capacity of C-NMOC (per gram of Mn present) was several times higher than commercial manganese oxide (beta-MnO2) and at least twice larger than NMO. The experimental evidence reveals that physisorption plays a dominant role in Pb(II) adsorption by both NMO and C-NMOC.
منابع مشابه
Preparation and Characterization of Polyaniline/Sb2O3 Nanocomposite and its Application to Removal of Pb(ІІ) from Aqueous Media
Nanocomposite of polyaniline (PAn) containing nanometre size Sb2O3 was prepared in aqueous media in situ chemical oxidative polymerization method at room temperature in the presence of hydroxypropylcellulose (HPC) as a surfactant. The ability of product to removal of lead ions from aqueous solution was studied. The chemical structure and morphology were studied by fourier transform infrared (FT...
متن کاملFacile and Efficient Self-template Synthesis of Core-coronal-shell ZnO@ZIF-8 Nanohybrid Using Ascorbic Acid and its Application for Arsenic Removal
In the present contribution, a facile and efficient protocol for synthesis a nanohybrid structure of core-coronal-shell ZnO@ZIF-8 using ascorbic acid (ZnO@AA/ZIF-8) as a new adsorbent for arsenic removal from water has been represented. For this purpose, the ZnO nanospheres were synthesized by a green and simple method followed by coating with ascorbic acid (AA) to modify their surface to achie...
متن کاملResponse Surface Methodology Optimization of Cobalt (II) and Lead (II) Removal from Aqueous Solution Using MWCNT-Fe3O4 Nanocomposite
The present investigation describes the evaluation of feasibility of MWCNT-Fe3O4 nanocomposite toward adsorptive removal of Co(II) and Pb(II) from aqueous solution in batch mode. The Fe3O4–MWCNT hybrid was prepared using a simple one-pot strategy via in situ growth of Fe3O4 magnetic nanoparticles onto the surface of the MWCNT...
متن کاملREMOVAL OF ORGANIC DYES FROM CONTAMINATED WATER USING COFE2O4 /REDUCED GRAPHENE OXIDE NANOCOMPOSITE
Up to now, lots of materials such as active carbon, iron, manganese, zirconium, and metal oxides have been widely used for removal of dyes from contaminated water. Among these, ferrite nanoparticle is an interesting magnetic material due to its moderate saturation magnetization, excellent chemical stability and mechanical hardness. Graphene, a new class of 2D carbonaceous material with atom thi...
متن کاملImprovement of Methanol Synthesis Process through a Novel Sorption-Enhanced Fluidized-bed Reactor, Part I: Mathematical Modeling
In the first part of two section paper, a mathematical model of the fluidized bed reactor in the presence of in-situ water adsorbent for methanol synthesis is assessed. The bubbling two-phase regime is applied to model the fluidization concept. The binary adsorbent and catalyst particles system can be separated from each other based on their density difference. The heavy catalyst particles tend...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of hazardous materials
دوره 181 1-3 شماره
صفحات -
تاریخ انتشار 2010